Overview of Particulate Matter in California

November 18, 2004

Outline of Presentation - Part 1

- Particulate matter primer
- Health impacts
- Exposure and toxicity considerations
- Future directions

Particulate Matter Primer

What is Particulate Matter?

A complex mixture that may contain:

Soot Smoke Metals

Elemental and Organic Carbon

Nitrates Sulfates Acids

Pollen Vegetation

Dust Water

Tire Rubber

Common Terms Used in Describing PM

Origin

- Primary (directly emitted)
- Secondary (formed in the atmosphere)

Size Distribution

- Coarse (2.5 to 10 μm) (primary)
- Fine (2.5 μm and less) (primary + secondary)
- Ultrafine (0.1 μm and less) (primary + secondary)

Measurement

- PM₁₀ (ultrafine + fine + coarse)
- $-PM_{2.5}$ (ultrafine + fine)
- $-PM_{10-25}$ (coarse)

How Small is PM?

Measurement of Particulate Matter

- Particles are captured onto a filter
- Mass of PM measured as micrograms per cubic meter (μg/m³) of air

One grain = $60 \mu g$

Sources of Particles

fuel combustion livestock sewage biogenic hydrocarbons fuel combustion
mechanical abrasion
(brake wear, tire wear)
road dust (paved, dirt)
agricultural activities
fugitive dust
biological (pollen, fungi)
sea salt
meat cooking

How is Secondary PM Formed?

Photochemical Reactions in the Atmosphere

NO_X Nitric acid Nitrate salts

or Polluted Fog

ammonium nitrate - ammonia sodium nitrate - sea salt organic nitrate - organic gases

SO₂ Sulfate salts ammonium sulfate - ammonia or Ozone Chemistry

Organic gases Condensible Organics

[aromatics (eg, PAHs), alkenes]

Distribution of Mass by Particle Size

Health Impacts:

Particulate matter accounts for most of the serious health effects linked to ambient air pollution

Particle Size and Health

Respiratory Deposition as a Function of Particle Size

Coarse PM is mostly deposited in upper respiratory track.

Ultrafine and Fine PM are deposited throughout the respiratory track.

Types of Health Studies

Epidemiologic Studies

- Investigate responses in populations
- Types:
 - Time-series -- acute effects
 - Longitudinal -- long-term effects
 - Intervention -- effects of control programs

Mechanistic Studies

- Investigate biological mechanisms or responses
- Types:
 - Cellular
 - **Animals**
 - **Humans**

Vulnerable Populations

Group	Type of Evidence		Strength of Evidence
	Epidemiology	Mechanistic	
Elderly with heart/lung dise	yes ase	yes	
Asthmatics	yes	emerging	
Children	yes	emerging	
Infants	yes	emerging	
Neonates	yes	emerging	
Diabetics	yes	emerging	

Effects of Long-term Exposure to PM

Long-term PM_{2.5}, PM₁₀ and sulfate exposure is associated with death in older adults with cardiopulmonary disease

- American Cancer Society study (Pope et al., 1995, 2002)
 - Over 550,000 adults from 151 U.S. cities
 - Followed for 16 years
 - 1.5 year average loss in life expectancy between least and most polluted cities (14 years per premature death)
 - Increased risk of lung cancer mortality
- Harvard Six-Cities study (Dockery et al., 1993)
 - Over 8000 adults
 - Followed for 14 to 16 years

Mortality Risk and Long-term PM

Harvard Six-Cities Study

Death Risk and Short-term PM

Percent Increase in death per 10 µg/m³ PM10 (90 cities, results for day after PM10 event)

Health Benefits of PM Control Intervention Studies

Winter Hospital Admissions for Children

Other Interventions

- CHS relocation (improved lung function growth)
- Dublin coal ban
- Erfurt, Germany reunification
- Hong Kong sulfur reduction

Ongoing

Los Angeles (1980-2000)

An Opportunity?

Diesel retrofits

Utah Valley Steel Mill Closure

Ambient Air Quality Standards (mg/m³)

		Annual	24-Hour
California	PM ₁₀	20	50
	PM _{2.5}	12	
National (current)	PM ₁₀	50	150
	PM _{2.5}	15	65
National (under review)	PM _{10-2.5}	13-30	30-75
	PM _{2.5}	12-15	30-50

Selected Examples of Health Benefits from Attaining State PM Standards

Meeting the California annual standards estimated to prevent, per year, about:

- 6,500 deaths
- 3,100 cardiovascular and 2,900 respiratory hospitalizations (over 65)
- 1,000 asthma hospitalizations (under 65)
- 389,000 incidences of lower respiratory symptoms (ages 7-14)
- 2,800,000 million lost work days
- Others (ER visits, asthma exacerbation)

Based on 18.5 (PM2.5) and 33.1 (PM10) µg/m³ population-weighted annual-average exposure in 2000.

Adverse Health Effects from Diesel PM Exposure

(annual number of cases)

Lung Cancer (TAC) 270 (95

Mortality (PM_{2.5})

270 (95% upper limit)

2000 (or 3000 95% upper limit)

Based on 1.8 μg/m³ population-weighted annual-average exposure in 2000. Lung cancer has a 90% mortality rate.

Particle exposure and toxicity considerations are a logical way to prioritize emission reductions

Controlling Ambient Air Impacts: Mass vs. Health

- Current control programs assess emissions reductions
 - -"A ton is a ton"
- For health impacts need to consider
 - Human exposure
 - Toxicity of particles

Exposure

- Total exposure for a population depends on:
 - Total mass emitted
 - Size of particles
 - Meteorology/dilution
 - Proximity effects
 - Population density
 - Ventilation rates
- Exposure impact can vary by 100-fold

PM Toxicity

- PM toxicity can vary
- Measured as toxic effect per PM mass
- Determined from human, animal, and cell culture studies
- Different animals, protocols makes comparisons difficult

Diesel and Gasoline Potency

WG = White smoke emitter, gasoline (n=1)

BG = Black smoke emitter, gasoline (n=1)

HD = Diesel black smoke emitter (n=1)

D = Diesel (n=3)

30 = tested at 30 deg F

G= gasoline (n=5)

What's on the Horizon?

Air Pollution Research Directions

- Toxicity ranking of PM sources
 - ARB traffic, wood smoke
 - HEI/USEPA systematic protocols
 - HEI Advanced Collaborative Emissions Study

- Mechanisms of PM toxicity
 - NIEHS/USEPA neonates, diabetics
 - ARB ultrafine PM

Ultrafine PM in Ambient Air

- Definition -- PM up to 0.1 μm
- Sources
 - Diesel- and gasoline-powered vehicles
 - Meat cooking and wood/biomass combustion
 - Secondary formation from heavy hydrocarbons
- High levels near sources
- Health findings
 - May be associated with death and disease
 - Pass into the circulatory system
 - Induce cellular damage

Health Effects Summary

- PM responsible for most of the serious health effects known from exposure to ambient air pollutants
- Annual-average standards most important to attain
 - U.S. EPA standards not health-protective
- Exposure and toxicity of particles appear to vary
- Future research includes health effects of ultrafine particles